cfS_TSP | R Documentation |
theta > 0
.cfS_TSP(t, theta, mu, sigma, coef, niid)
is an ALIAS of the more general function cf_TSPSymmetric
, used to evaluate the characteristic function of a linear combination of
independent (location-scale) TSP distributed random variables.
The characteristic function of the random variable X ~ TSP(theta)
is cf(t) = 1/2 * (hypergeom1F1(1,1+theta,1i*t) + hypergeom1F1(1,1+theta,-1i*t))
.
#' SPECIAL CASES:
1) \theta = 1/2
; Arcsine distribution on (-1,1)
: cf(t) = besselj(0,t)
,
2) \theta = 1
; Rectangular distribution on (-1,1)
: cf(t) = sin(t)/t
.
cfS_TSP(t, theta, mu, sigma, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
theta |
the shape parameter, |
mu |
vector of location parameters, mu in Real. If empty, default value is |
sigma |
vector of scale parameters, |
coef |
vector of the coefficients of the linear combination of the log-transformed random variables. If |
niid |
scalar convolution coeficient n, such that |
Characteristic function of a linear combination of independent (location scale TSP distributed random variables.
Ver.: 11-Aug-2021 16:37:22 (consistent with Matlab CharFunTool v1.5.1, 24-Jun-2017 18:25:56).
[1] WITKOVSKY V. (2016). Numerical inversion of a characteristic function: An alternative tool to form the probability distribution of output quantity in linear measurement models. Acta IMEKO, 5(3), 32-44. [2] VAN DORP, R.J., KOTZ, S. (2003). Generalizations of two-sided power distributions and their convolution. Communications in Statistics-Theory and Methods, 32(9), 1703-1723.
Other Continuous Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_Trapezoidal()
,
cfS_Triangular()
,
cfS_Wigner()
,
cfX_ChiSquare()
,
cfX_Exponential()
,
cfX_FisherSnedecor()
,
cfX_Gamma()
,
cfX_InverseGamma()
,
cfX_LogNormal()
,
cf_ArcsineSymmetric()
,
cf_BetaNC()
,
cf_BetaSymmetric()
,
cf_Beta()
,
cf_ChiSquare()
,
cf_Exponential()
,
cf_FisherSnedecorNC()
,
cf_FisherSnedecor()
,
cf_Gamma()
,
cf_InverseGamma()
,
cf_Laplace()
,
cf_LogRV_BetaNC()
,
cf_LogRV_Beta()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_ChiSquare()
,
cf_LogRV_FisherSnedecorNC()
,
cf_LogRV_FisherSnedecor()
,
cf_LogRV_MeansRatioW()
,
cf_LogRV_MeansRatio()
,
cf_LogRV_WilksLambdaNC()
,
cf_LogRV_WilksLambda()
,
cf_Normal()
,
cf_RectangularSymmetric()
,
cf_Student()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
,
cf_TriangularSymmetric()
,
cf_vonMises()
## EXAMPLE 1
# CF of the symmetric TSP distribution with theta =3/2 on (-1,1)
theta <- 3/2
t <- seq(from = -50,
to = 50,
length.out =501)
plotReIm(function(t)
cfS_TSP(t, theta),
t,
title = "CF of the symmetric TSP distribution on (-1,1)")
##EXAMPLE2
# PDF/CDF of the symmetric TSP distribution on (-1,1)
thet <- 3/2
cf <- function(t)
cfS_TSP(t, theta)
x <- seq(-1,1,length.out = 101)
xRange <- 2
options <- list()
options.N <-2^8
options.dt <- 2*pi/xRange
result <- cf2DistGP(cf, x, c(), options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.