View source: R/cf_BetaSymmetric.R
| cf_BetaSymmetric | R Documentation |
cf_BetaSymmetric(t, theta, coef, niid) evaluates the characteristic function of a linear combination
(resp. convolution) of independent zero-mean symmetric BETA random variables defined on the interval (-1,1).
That is, cf_BetaSymmetric evaluates the characteristic function
cf(t) of Y = sum_{i=1}^N coef_i * X_i, where X_i~BetaSymmetric(\theta_i)
are independent RVs defined on (-1,1), for all i = 1,...,N.
The characteristic function of X ~ BetaSymmetric(\theta) is defined by
cf(t) = cf_BetaSymmetric(t,\theta) = gamma(1/2+\theta) * (t/2)^(1/2-\theta) * besselj(\theta-1/2,t).
SPECIAL CASES:
1) \theta = 1/2; Arcsine distribution on (-1,1): cf(t) = besselj(0,t),
2) \theta = 1; Rectangular distribution on (-1,1): cf(t) = sin(t)/t.
cf_BetaSymmetric(t, theta, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
theta |
the 'shape' parameter |
coef |
vector of the coefficients of the linear combination of Beta distributed random variables. If |
niid |
scalar convolution coeficient |
Characteristic function cf(t) of a linear combination
of independent zero-mean symmetric BETA random variables.
Ver.: 16-Sep-2018 18:10:34 (consistent with Matlab CharFunTool v1.3.0, 02-Jun-2017 12:08:24).
WITKOVSKY V. (2016). Numerical inversion of a characteristic function: An alternative tool to form the probability distribution of output quantity in linear measurement models. Acta IMEKO, 5(3), 32-44.
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Beta_distribution.
Other Continuous Probability Distribution:
cfS_Arcsine(),
cfS_Beta(),
cfS_Gaussian(),
cfS_Laplace(),
cfS_Rectangular(),
cfS_Student(),
cfS_TSP(),
cfS_Trapezoidal(),
cfS_Triangular(),
cfS_Wigner(),
cfX_ChiSquare(),
cfX_Exponential(),
cfX_FisherSnedecor(),
cfX_Gamma(),
cfX_InverseGamma(),
cfX_LogNormal(),
cf_ArcsineSymmetric(),
cf_BetaNC(),
cf_Beta(),
cf_ChiSquare(),
cf_Exponential(),
cf_FisherSnedecorNC(),
cf_FisherSnedecor(),
cf_Gamma(),
cf_InverseGamma(),
cf_Laplace(),
cf_LogRV_BetaNC(),
cf_LogRV_Beta(),
cf_LogRV_ChiSquareNC(),
cf_LogRV_ChiSquare(),
cf_LogRV_FisherSnedecorNC(),
cf_LogRV_FisherSnedecor(),
cf_LogRV_MeansRatioW(),
cf_LogRV_MeansRatio(),
cf_LogRV_WilksLambdaNC(),
cf_LogRV_WilksLambda(),
cf_Normal(),
cf_RectangularSymmetric(),
cf_Student(),
cf_TSPSymmetric(),
cf_TrapezoidalSymmetric(),
cf_TriangularSymmetric(),
cf_vonMises()
Other Symmetric Probability Distribution:
cfS_Arcsine(),
cfS_Beta(),
cfS_Gaussian(),
cfS_Laplace(),
cfS_Rectangular(),
cfS_Student(),
cfS_Trapezoidal(),
cf_ArcsineSymmetric(),
cf_RectangularSymmetric(),
cf_TSPSymmetric(),
cf_TrapezoidalSymmetric()
## EXAMPLE 1
# CF of the symmetric Beta distribution with theta = 3/2 on (-1,1)
theta <- 3 / 2
t <- seq(from = -50,
to = 50,
length.out = 201)
plotReIm(function(t)
cf_BetaSymmetric(t, theta),
t,
title = "CF of the symmetric Beta distribution on (-1,1)")
## EXAMPLE 2
# CF of a linear combination of independent Beta RVs
t <- seq(from = -20,
to = 20,
length.out = 201)
theta <- c(3, 3, 4, 4, 5) / 2
coef <- c(1, 2, 3, 4, 5) / 15
plotReIm(function(t)
cf_BetaSymmetric(t, theta, coef),
t,
title = "CF of a linear combination of independent Beta RVs")
## EXAMPLE 3
# PDF/CDF of a weighted linear combination of independent Beta RVs
theta <- c(3, 3, 4, 4, 5) / 2
coef <- c(1, 2, 3, 4, 5) / 15
cf <- function(t)
cf_BetaSymmetric(t, theta, coef)
x <- seq(from = -1,
to = 1,
length.out = 201)
prob <- c(0.9, 0.95, 0.99)
options <- list()
options$N <- 2 ^ 12
options$xMin <- -1
options$xMax <- 1
result <- cf2DistGP(cf, x, prob, options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.