View source: R/cf_LogRV_FisherSnedecorNC.R
cf_LogRV_FisherSnedecorNC | R Documentation |
cf_LogRV_FisherSnedecorNC(t, df1, df2, delta, coef, niid, tol)
evaluates characteristic function
of a linear combination (resp. convolution) of independent LOG-TRANSFORMED non-central Fisher-Snedecor
random variables, with distributions F(df1_i,df2_i,\delta_i)
.
That is, cf_LogRV_FisherSnedecorNC
evaluates the characteristic function
cf(t)
of Y = coef_i*log(X_1) +...+ coef_N*log(X_N)
, where X_i ~ F(df1_i,df2_i,\delta_i)
are inedependent RVs, with df1_i
and df2_i
degrees of freedom, and the noncentrality parameters delta_i >0
,
for i = 1,...,N
.
The characteristic function of Y = log(X) with X ~ F(df1,df2,\delta)
is Poisson mixture
of the CFs of the shifted log-transformed central F RVs of the form
cf(t) = cf_LogRV_FisherSnedecorNC(t,df1,df2,\delta) = exp(-\delta/2) sum_{j=1}^Inf (\delta/2)^j/j! *
exp(1i*t*(df1+2*j)/df1) * cf_LogRV_FisherSnedecor(t,df1+2*j,df2),
where cf_LogRV_FisherSnedecor(t,df1,df2) denotes CF of log-transformed centrally distributed
F RVs with parameters df1 and df2. For more details on the non-central
F distribution see cf_FisherSnedecorNC
.
Alternatively,
cf(t) = (df2/df1)^(1i*t) * gamma(df1/2 + 1i*t) / gamma(df1/2) * gamma(df2/2 - 1i*t) / gamma(df2/2) * 1F1(-1i*t;df1/2;-delta/2),
where 1F1(a;b;z)
is the confluent hypergeometric function, also known as the Kummer function M(a,b,z)
.
Hence,the characteristic function of Y = coef(1)*Y1 + ... + coef(N)*YN
is cf_Y(t) = cf_Y1(coef(1)*t) * ... * cf_YN(coef(N)*t)
, where cf_Yi(t)
is evaluated with the parameters df1_i
, df2_i
, and delta_i
.
cf_LogRV_FisherSnedecorNC(t, df1, df2, delta, coef, niid, tol)
t |
vector or array of real values, where the CF is evaluated. |
df1 |
vector of the degrees of freedom |
df2 |
vector of the degrees of freedom |
delta |
vector of non-centrality parameters. |
coef |
vector of the coefficients of the linear combination of the Beta distributed random variables.
If coef is scalar, it is assumed that all coefficients are equal. If empty, default value is |
niid |
scalar convolution coeficient |
tol |
tolerance factor for selecting the Poisson weights, i.e. such that |
Characteristic function cf(t)
of a linear combination
of independent LOG-TRANSFORMED non-central Fisher-Snedecor random variables.
Ver.: 20-Sep-2018 19:44:50 (consistent with Matlab CharFunTool v1.3.0, 10-Aug-2018 15:46:49).
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Noncentral_F-distribution.
Other Continuous Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_TSP()
,
cfS_Trapezoidal()
,
cfS_Triangular()
,
cfS_Wigner()
,
cfX_ChiSquare()
,
cfX_Exponential()
,
cfX_FisherSnedecor()
,
cfX_Gamma()
,
cfX_InverseGamma()
,
cfX_LogNormal()
,
cf_ArcsineSymmetric()
,
cf_BetaNC()
,
cf_BetaSymmetric()
,
cf_Beta()
,
cf_ChiSquare()
,
cf_Exponential()
,
cf_FisherSnedecorNC()
,
cf_FisherSnedecor()
,
cf_Gamma()
,
cf_InverseGamma()
,
cf_Laplace()
,
cf_LogRV_BetaNC()
,
cf_LogRV_Beta()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_ChiSquare()
,
cf_LogRV_FisherSnedecor()
,
cf_LogRV_MeansRatioW()
,
cf_LogRV_MeansRatio()
,
cf_LogRV_WilksLambdaNC()
,
cf_LogRV_WilksLambda()
,
cf_Normal()
,
cf_RectangularSymmetric()
,
cf_Student()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
,
cf_TriangularSymmetric()
,
cf_vonMises()
Other Non-central Probability Distribution:
cf_BetaNC()
,
cf_FisherSnedecorNC()
,
cf_LogRV_BetaNC()
,
cf_LogRV_ChiSquareNC()
## EXAMPLE 1
# CF of the log-transformed non-central F RV with delta = 1 and coef = -1
df1 <- 3
df2 <- 5
delta <- 1
coef <- -1
t <- seq(from = -10,
to = 10,
length.out = 201)
plotReIm(function(t)
cf_LogRV_FisherSnedecorNC(t, df1, df2, delta, coef),
t,
title = 'CF of minus log-transformed F RV')
## EXAMPLE 2
# CDF/PDF of the minus log-transformed non-central F RV with delta = 1
df1 <- 3
df2 <- 5
delta <- 1
coef <- -1
cf <-
function(t)
cf_LogRV_FisherSnedecorNC(t, df1, df2, delta, coef)
options <- list()
options$N <- 2 ^ 12
result <- cf2DistGP(cf = cf, options = options)
## EXAMPLE 3
# CDF/PDF of the linear combination of log-transformed non-central F RVs
df1 <- c(5, 4, 3)
df2 <- c(3, 4, 5)
delta <- c(0, 1, 2)
coef <- -1 / 3
cf <-
function(t)
cf_LogRV_FisherSnedecorNC(t, df1, df2, delta, coef)
options <- list()
options$N <- 2 ^ 12
result <- cf2DistGP(cf = cf, options = options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.