View source: R/cf_InverseGamma.R
cf_InverseGamma | R Documentation |
cf_InverseGamma(t, alpha, beta, coef, niid)
evaluates the characteristic function cf(t)
of a linear combination (resp. convolution) of independent INVERSE-GAMMA random variables.
That is, cf_InvGamma
evaluates the characteristic function cf(t)
of Y = sum_{i=1}^N coef_i * X_i
, where X_i ~ InvGamma(\alpha_i,\beta_i)
are inedependent RVs, with the shape parameters \alpha_i > 0
and
the rate parameters \beta_i > 0
, for i = 1,...,N
.
The characteristic function of Y is defined by
cf(t) = Prod( 2 / gamma(\alpha(i)) * (-1i*\beta(i)*t).^(\alpha(i)/2) * besselk(\alpha(i),sqrt(-4i*\beta(i)*t)) ).
cf_InverseGamma(t, alpha, beta, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
alpha |
the shape parameter |
beta |
the rate (1/scale) parameter |
coef |
- vector of the coefficients of the linear combination
of the IGamma random variables. If coef is scalar,
it is assumed that all coefficients are equal. If empty, default value is |
niid |
scalar convolution coeficient |
PARAMETRIZATION:
As for the GAMMA distribution, also for the Inverse-Gamma distribution
there are three different possible parametrizations:
i) With a shape parameter k
and a scale parameter \theta
.
ii) With a shape parameter \alpha = k
and an inverse scale parameter
\beta = 1/\theta
, called a rate parameter.
iii) With a shape parameter k
and a mean parameter \mu = k/\beta
.
In each of these three forms, both parameters are positive real numbers.
Here, cf_InverseGamma
implements the shape-rate parametrization with
parameters \alpha
and \beta
, respectively.
If X ~ IGamma(df/2,1/2)
(shape-rate parametrization), then X
is identical
to ICHI2(df)
, the Inverse-Chi-squared distribution with df
degrees of freedom.
Characteristic function cf(t)
of a linear combination of independent INVERSE-GAMMA random variables.
Ver.: 16-Sep-2018 18:28:11 (consistent with Matlab CharFunTool v1.3.0, 10-May-2017 18:11:50).
WITKOVSKY, V.: Computing the distribution of a linear combination of inverted gamma variables, Kybernetika 37 (2001), 79-90.
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Inverse-gamma_distribution.
Other Continuous Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_TSP()
,
cfS_Trapezoidal()
,
cfS_Triangular()
,
cfS_Wigner()
,
cfX_ChiSquare()
,
cfX_Exponential()
,
cfX_FisherSnedecor()
,
cfX_Gamma()
,
cfX_InverseGamma()
,
cfX_LogNormal()
,
cf_ArcsineSymmetric()
,
cf_BetaNC()
,
cf_BetaSymmetric()
,
cf_Beta()
,
cf_ChiSquare()
,
cf_Exponential()
,
cf_FisherSnedecorNC()
,
cf_FisherSnedecor()
,
cf_Gamma()
,
cf_Laplace()
,
cf_LogRV_BetaNC()
,
cf_LogRV_Beta()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_ChiSquare()
,
cf_LogRV_FisherSnedecorNC()
,
cf_LogRV_FisherSnedecor()
,
cf_LogRV_MeansRatioW()
,
cf_LogRV_MeansRatio()
,
cf_LogRV_WilksLambdaNC()
,
cf_LogRV_WilksLambda()
,
cf_Normal()
,
cf_RectangularSymmetric()
,
cf_Student()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
,
cf_TriangularSymmetric()
,
cf_vonMises()
## EXAMPLE 1
# CF of a linear combination of K=100 independent IGamma RVs
coef <- 1 / (((1:50) - 0.5) * pi) ^ 2
plot(
1:50,
coef,
xlab = "",
ylab = "",
type = "p",
pch = 20,
col = "blue",
cex = 1,
main = expression('Coefficients of the linear combination of' ~ chi ^ 2 ~ 'RVs with DF=1')
)
lines(1:50, coef, col = "blue")
alpha <- 5 / 2
beta <- 2
t <- seq(from = -100,
to = 100,
length.out = 201)
plotReIm(function(t)
cf_InverseGamma(t, alpha, beta, coef), t,
title = "Characteristic function of the linear combination of IGamma RVs")
## EXAMPLE 2
# PDF/CDF from the CF by cf2DistGP
alpha <- 5 / 2
beta <- 1 / 2
coef <- 1 / (((1:50) - 0.5) * pi) ^ 2
cf <- function(t)
cf_InverseGamma(t, alpha, beta, coef)
options <- list()
options$N <- 2 ^ 10
options$xMin = 0
x <- seq(from = 0,
to = 4,
length.out = 201)
prob <- c(0.9, 0.95, 0.99)
result <- cf2DistGP(cf, x, prob, options)
result
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.