View source: R/cf_LogRV_MeansRatioW.R
| cf_LogRV_MeansRatioW | R Documentation | 
N independent
LOG-TRANSFORMED WEIGHTED MEANS-RATIO random variablescf_LogRV_MeansRatioW(t, n, alpha, weight, coef, niid) evaluates characteristic function
of a linear combination (resp. convolution) of independent LOG-TRANSFORMED
WEIGHTED MEANS-RATIO random variables (RVs) W_i = log(R_i), for i = 1,...,N,
where each R_i = G_i/A_i is a ratio of the weighted geometric mean  G_i
and the (unweighted) arithmetic mean A_i of independent RVs X_{i,1},...,X_{i,n_i}
with GAMMA distributions, with the shape parameters \alpha_{i,j} and the (common) rate parameter
\beta_i for i = 1,...,N and j = 1,...,n_i.
That is, cf_LogRV_MeansRatioW evaluates the characteristic function of a random
variable Y = coef_1*W_1 +...+ coef_N*W_N, such that cf_Y(t) = cf_W_1(coef_1*t) *...* cf_W_N(coef_N*t),
where cf_W_i(t) is CF of W_i = log(R_i), where R_i is the ratio statistic of the weighted geometric
mean and the arithmetic mean of independent gamma distributed RVs,
which distribution depends on the shape parameter \alpha_{i,j} and the vector
of weights w_{i,j}, for i = 1,...,N and j = 1,...,n_i.
Here, for each fixed i = 1,...,N, the weighted geometric mean is defined
by G_i = (X_{i,1}^w_{i,1} *...* X_{i,n_i}^w_{i,n_i}), where the weights w_{i,j},
j = 1,...,n_i, are such that w_{i,1} +...+ w_{i,n_i} = 1, and the arithmetic mean is defined
by A_i = (X_{i,1} +...+ X_{i,n_i})/n_i.
The random variables  X_{i,j} are mutually independent with X_{i,j} ~ \Gamma(\alpha_{i,j},\beta_i)
for all i = 1,...,N and j = 1,...,n_i, where \alpha_{i,j} are the shape parameters and
\beta_i is the (common) rate parameter of the gamma distributions.
Note that the weighted ratio random variables R_i are scale invariant,
so their distribution does not depend on the common rate (or scale) parameter \beta_i
for each i = 1,...,N.
The distribution of the logarithm of the means ratio log(R_i) is defined
by its characteristic function, see e.g. Chao and Glaser (JASA 1978), which is
cf_{log(R_i)}(t) = (n_i)^(1i*t) * ... \Gamma(sum(\alpha_{i,j}))/\Gamma(sum(\alpha_{i,j})+1i*t)) * ... Prod_{j=1}^n_i \Gamma(\alpha_{i,j}+1i*w_{i,j}*t)/\Gamma(\alpha_{i,j})
,
for each i = 1,...,N.
cf_LogRV_MeansRatioW(t, n, alpha, weight, coef, niid)
t | 
 vector or array of real values, where the CF is evaluated.  | 
n | 
 vector of sample size parameters   | 
alpha | 
 list of weights vectors with shape parameters   | 
weight | 
 list of weights vectors with   | 
coef | 
 vector of the coefficients of the linear combination of the
log-transformed random variables. If   | 
niid | 
 scalar convolution coeficient   | 
Characteristic function cf(t) of a linear combination of N independent
LOG-TRANSFORMED WEIGHTED MEANS-RATIO random variables.
Ver.: 05-Oct-2018 17:54:23 (consistent with Matlab CharFunTool v1.3.0, 17-Jun-2017 17:18:39).
Glaser, R. E. (1976a). The ratio of the geometric mean to the arithmetic mean for a random sample from a gamma distribution. Journal of the American Statistical Association, 71(354), 480-487.
Glaser, R. E. (1976b). Exact critical values for Bartlett's test for homogeneity of variances. Journal of the American Statistical Association, 71(354), 488-490.
Chao, M. T., & Glaser, R. E. (1978). The exact distribution of Bartlett's test statistic for homogeneity of variances with unequal sample sizes. Journal of the American Statistical Association, 73(362), 422-426.
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Bartlett
Other Continuous Probability Distribution: 
cfS_Arcsine(),
cfS_Beta(),
cfS_Gaussian(),
cfS_Laplace(),
cfS_Rectangular(),
cfS_Student(),
cfS_TSP(),
cfS_Trapezoidal(),
cfS_Triangular(),
cfS_Wigner(),
cfX_ChiSquare(),
cfX_Exponential(),
cfX_FisherSnedecor(),
cfX_Gamma(),
cfX_InverseGamma(),
cfX_LogNormal(),
cf_ArcsineSymmetric(),
cf_BetaNC(),
cf_BetaSymmetric(),
cf_Beta(),
cf_ChiSquare(),
cf_Exponential(),
cf_FisherSnedecorNC(),
cf_FisherSnedecor(),
cf_Gamma(),
cf_InverseGamma(),
cf_Laplace(),
cf_LogRV_BetaNC(),
cf_LogRV_Beta(),
cf_LogRV_ChiSquareNC(),
cf_LogRV_ChiSquare(),
cf_LogRV_FisherSnedecorNC(),
cf_LogRV_FisherSnedecor(),
cf_LogRV_MeansRatio(),
cf_LogRV_WilksLambdaNC(),
cf_LogRV_WilksLambda(),
cf_Normal(),
cf_RectangularSymmetric(),
cf_Student(),
cf_TSPSymmetric(),
cf_TrapezoidalSymmetric(),
cf_TriangularSymmetric(),
cf_vonMises()
## EXAMPLE 1
# CF of log MeansRatio RV with n = 5 and alpha = 7/2
n <- 5
alpha <- 7/2
t <- seq(-100, 100, length.out = 201)
plotReIm(function(t) cf_LogRV_MeansRatioW(t, n, alpha), t,
         title = 'CF of log MeansRatio RV with n = 5 and alpha = 7/2')
## EXAMPLE 2
# CF of a weighted linear combination of minus log MeansRatio RVs
rm(list=ls())
n <- c(5, 7, 10)
alpha <- list(c(7/2), c(10/2), c(3/2))
weight = list()
coef <- -1/3
t <- seq(-100, 100, length.out = 201)
plotReIm(function(t) cf_LogRV_MeansRatioW(t, n, alpha, weight, coef), t,
         title = 'CF of a weighted linear combination of minus log MeansRatio RVs')
## EXAMPLE 3
# PDF/CDF of minus log MeansRatio RV, n = 5 and alpha = 7/2, from its CF
rm(list=ls())
n <- 5
alpha <- 7/2
coef <- -1
cf <- function(t) cf_LogRV_MeansRatioW(t, n, alpha, coef = coef)
x <- seq(0, 0.6, length.out = 100)
prob <- c(0.9, 0.95, 0.99)
options <- list()
options$xMin <- 0
result <- cf2DistGP(cf, x, prob, options)
str(result)
## EXAMPLE 4
# PDF/CDF of minus log of the (weighted) means ratio RV, from its CF
rm(list=ls())
n <- 5
alpha <- list(c(3, 5, 7, 10, 3) / 2)
weight <- list(alpha[[1]] / sum(alpha[[1]]))
coef <- -1
cf <- function(t) cf_LogRV_MeansRatioW(t, n, alpha, weight, coef)
x <- seq(-0.15, 1.15, length.out = 200)
prob <- c(0.9, 0.95, 0.99)
options <- list()
options$N <- 2^12
result <- cf2DistGP(cf, prob = prob, options = options)
str(result)
## EXAMPLE 5
# Compare the exact distribution with the Bartlett's approximation
rm(list=ls())
k <- 15 # k normal populations with unequal sample sizes
df <- c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3) # degrees of freedom
DF <- sum(df)
alpha <- list(df / 2)
weight <- list(alpha[[1]] / sum(alpha[[1]]))
C <- DF * log(k * prod(weight[[1]] ^ weight[[1]]))
C_B <- 1 + 1 / (3 * (k - 1)) * (sum(1 / df) - 1 / DF)
shift <- C / C_B
coef <- -DF / C_B
cf_R <- function(t) cf_LogRV_MeansRatioW(t, k, alpha, weight, coef)
cf <- function(t) exp(1i * t * shift) * cf_R(t)
prob <- c(0.9, 0.95, 0.99)
options <- list()
options$xMin <- 0
options$N <- 2^12
result <- cf2DistGP(cf, prob = prob, options = options)
str(result)
x <- result$x
matplot(cbind(x, x), cbind(result$cdf, pchisq(x, k - 1)),
        xlab = 'corrected test statistic', ylab = 'CDF',
        main = 'Exact CDF vs. the Bartlett approximation')
matplot(cbind(x, x), cbind(result$cdf, pchisq(x, k - 1)),
        xlab = 'corrected test statistic', ylab = 'CDF',
        main = 'Exact CDF vs. the Bartlett approximation',
        type = "l", lwd = 2)
print(prob)
print(result$qf)
print(qchisq(prob, k - 1))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.