| cfS_Student | R Documentation |
cfS_Student(t, df, mu, sigma, coef, niid) evaluates the characteristic function cf(t)
of the STUDENT's t-distribution with df > 0 degrees of freedom.
cfS_Student is an ALIAS of the more general function cf_Student, used
to evaluate the characteristic function of a linear combination
of independent (location-scale) STUDENT's t-distributed random variables.
The characteristic function of the STUDENT's t-distribution with df degrees of freedom is defined by
cf(t) = cfS_Student(t,df) = besselk(df/2,abs(t)*sqrt(df),1) * exp(-abs(t)*sqrt(df)) * (sqrt(df)*abs(t))^(df/2) / 2^(df/2-1)/gamma(df/2).
cfS_Student(t, df = 1, mu, sigma, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
df |
the degrees of freedom, |
mu |
vector. |
sigma |
vector. |
coef |
vector of coefficients of the linear combination of Student distributed random variables.
If coef is scalar, it is assumed that all coefficients are equal. If empty, default value is |
niid |
scalar convolution coeficient. |
Characteristic function cf(t) of the STUDENT's t-distribution.
Ver.: 16-Sep-2018 19:09:41 (consistent with Matlab CharFunTool v1.3.0, 02-Jun-2017 12:08:24).
WITKOVSKY V. (2016). Numerical inversion of a characteristic function: An alternative tool to form the probability distribution of output quantity in linear measurement models. Acta IMEKO, 5(3), 32-44.
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Student's_t-distribution.
Other Continuous Probability Distribution:
cfS_Arcsine(),
cfS_Beta(),
cfS_Gaussian(),
cfS_Laplace(),
cfS_Rectangular(),
cfS_TSP(),
cfS_Trapezoidal(),
cfS_Triangular(),
cfS_Wigner(),
cfX_ChiSquare(),
cfX_Exponential(),
cfX_FisherSnedecor(),
cfX_Gamma(),
cfX_InverseGamma(),
cfX_LogNormal(),
cf_ArcsineSymmetric(),
cf_BetaNC(),
cf_BetaSymmetric(),
cf_Beta(),
cf_ChiSquare(),
cf_Exponential(),
cf_FisherSnedecorNC(),
cf_FisherSnedecor(),
cf_Gamma(),
cf_InverseGamma(),
cf_Laplace(),
cf_LogRV_BetaNC(),
cf_LogRV_Beta(),
cf_LogRV_ChiSquareNC(),
cf_LogRV_ChiSquare(),
cf_LogRV_FisherSnedecorNC(),
cf_LogRV_FisherSnedecor(),
cf_LogRV_MeansRatioW(),
cf_LogRV_MeansRatio(),
cf_LogRV_WilksLambdaNC(),
cf_LogRV_WilksLambda(),
cf_Normal(),
cf_RectangularSymmetric(),
cf_Student(),
cf_TSPSymmetric(),
cf_TrapezoidalSymmetric(),
cf_TriangularSymmetric(),
cf_vonMises()
Other Symmetric Probability Distribution:
cfS_Arcsine(),
cfS_Beta(),
cfS_Gaussian(),
cfS_Laplace(),
cfS_Rectangular(),
cfS_Trapezoidal(),
cf_ArcsineSymmetric(),
cf_BetaSymmetric(),
cf_RectangularSymmetric(),
cf_TSPSymmetric(),
cf_TrapezoidalSymmetric()
## EXAMPLE1
# CF of the Student t-distribution with df = 3
df <- 3
t <- seq(-5, 5, length.out = 501)
plotReIm(function(t)
cfS_Student(t, df), t, title = "CF of the Student t-distribution with df = 3")
## EXAMPLE2
# PDF/CDF of the Student t-distribution with df = 3
df <- 3
cf <- function(t)
cfS_Student(t, df)
x <- seq(-8, 8, length.out = 101)
prob <- c(0.9, 0.95, 0.99)
options <- list()
options$N <- 2 ^ 12
options$SixSigmaRule <- 30
result <- cf2DistGP(cf, x, prob, options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.