| ChebValues | R Documentation |
ChebValues(coeffs) converts the n-dimensional Chebyshev coefficients to
ChebValues(coeffs)
coeffs |
Chebyshev coefficients |
V = ChebValues(C) returns the n-dimensional vector of (polynomial)
values evaluated at the Chebyshev points x such that V(i) = f(x(i))=
C(1)*T_{0}(x(i)) + C(2)*T_{1}(x(i)) + ... + C(N)*T_{N-1}(x(i)) (where T_k(x)
denotes the k-th 1st-kind Chebyshev polynomial, and x(i) are the
2nd-kind Chebyshev nodes.
If the input C is an (n x m)-matrix then V = ChebValues(C) returns
(n x m)-matrix of values V such that V(i,j) = P_j(x_i) =
C(1,j)*T_{0}(x(i)) + C(2,j)*T_{1}(x(i)) + ... + C(N,j)*T_{N-1}(x(i)).
Ver.: 15-Nov-2021 17:55:08 (consistent with Matlab CharFunTool v1.3.0, 28-May-2021 14:28:24).
Other Utility Function:
ChebCoefficients(),
ChebPoints(),
ChebPolyValues(),
ChebPoly(),
GammaLog(),
GammaMultiLog(),
GammaMulti(),
GammaZX(),
Hypergeom1F1MatApprox(),
Hypergeom1F1Mat(),
Hypergeom2F1Mat(),
Hypergeom2F1(),
HypergeompFqMat(),
InterpChebValues(),
hypergeom1F1(),
interpBarycentric()
## EXAMPLE1 (Values of Sine function evaluated Chebyshev points on (-pi,pi))
n <- 2^5+1
domain <- c(-pi,pi)
x <- ChebPoints(n,domain)
f <-list( sin(x[[1]]))
coeffs <- ChebCoefficients(f)
V <- ChebValues(coeffs)
print(list(x[[1]], coeffs, f, V))
## EXAMPLE2 (Chebyshev values of the Sine and the Cosine on (-pi,pi))
n <- 2^5+1
domain <- c(-pi,pi)
x <- ChebPoints(n,domain)
f <-list( sin(x[[1]]), cos(x[[1]]))
coeffs <- ChebCoefficients(f)
V <- ChebValues(coeffs)
print(list(x[[1]], coeffs, f, V))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.