View source: R/Hypergeom1F1Mat.R
Hypergeom1F1Mat | R Documentation |
Hypergeom1F1Mat(a, b, X, MAX)
computes the confluent hypergeometric function 1F1(a;b;X)
of a (p x p)
-matrix argument X
. Hypergeom1F1Mat
is defined for the complex parameters
a
and b
, with Re(a) > (p-1)/2
and Re(b-a) > (p-1)/2
, and a REAL symmetric matrix argument X
.
For more details and definition of the hypergeometric functions with matrix argument see, e.g., Koev and Edelman (2006) or Muirhead (2009).
Hypergeom1F1Mat(a, b, X, MAX)
a |
complex vector of parameters of the hypergeometric function |
b |
complex vector of parameters of the hypergeometric function |
X |
real symmetric |
MAX |
maximum number of partitions, |
Hypergeometric sum, 1F1(a;b;X)
.
Ver.: 18-Oct-2018 13:16:53 (consistent with Matlab CharFunTool v1.3.0, 25-Oct-2017 14:56:37).
[1] Koev, P. and Edelman, A., 2006. The efficient evaluation of the hypergeometric function of a matrix argument. Mathematics of Computation, 75(254), 833-846.
[2] Muirhead RJ. Aspects of multivariate statistical theory. John Wiley & Sons; 2009 Sep 25.
[3] Butler RW, Wood AT. Laplace approximations for hypergeometric functions with matrix argument. The Annals of Statistics. 2002;30(4):1155-77.
Other Utility Function:
ChebCoefficients()
,
ChebPoints()
,
ChebPolyValues()
,
ChebPoly()
,
ChebValues()
,
GammaLog()
,
GammaMultiLog()
,
GammaMulti()
,
GammaZX()
,
Hypergeom1F1MatApprox()
,
Hypergeom2F1Mat()
,
Hypergeom2F1()
,
HypergeompFqMat()
,
InterpChebValues()
,
hypergeom1F1()
,
interpBarycentric()
## EXAMPLE
a <- 3
b <- 5
X <- c(1, 2, 3)
MAX <- 10
f <- Hypergeom1F1Mat(a, b, X, MAX)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.