| Hypergeom2F1 | R Documentation |
Hypergeom2F1(a, b, c, z) computes the Gauss hypergeometric function 2F1(a,b,c,z),
for the real parameters a, b and c (here assumed to be scalars),
and the complex argument z (could be scalar, vector or array).
Hypergeom2F1(a, b, c, z)
a |
parameter - real scalar. |
b |
parameter - real scalar. |
c |
parameter - real scalar. |
z |
complex argument - scalar, vector or array. |
The functions based on Hypergeom2F1 is badly conditioned for when c is negative integer.
In such situations, approximate the function value by using the noninteger parameter c,
say c = c + eps, for some small eps.
The Gauss hypergeometric function 2F1(a,b,c,z).
Ver.: 06-Oct-2018 18:36:05 (consistent with Matlab CharFunTool v1.3.0, 18-Aug-2018 18:32:27).
The algorithm is based on a Fortran program in
S. Zhang & J. Jin "Computation of Special Functions" (Wiley, 1996). Converted by Ben Barrowes (barrowes@alum.mit.edu).
Other Utility Function:
ChebCoefficients(),
ChebPoints(),
ChebPolyValues(),
ChebPoly(),
ChebValues(),
GammaLog(),
GammaMultiLog(),
GammaMulti(),
GammaZX(),
Hypergeom1F1MatApprox(),
Hypergeom1F1Mat(),
Hypergeom2F1Mat(),
HypergeompFqMat(),
InterpChebValues(),
hypergeom1F1(),
interpBarycentric()
## EXAMPLE 1
a <- 3
b <- 2.5
c <- 1.5
z <- 1i * seq(0, 1, by = 0.05)
f <- Hypergeom2F1(a, b, c, z)
# EXAMPLE 2
t <- 1i * seq(-5, 5, length.out = 11)
a <- 3 * t
b <- 2.5 * t
c <- 1.5 * t
z <- 0.75
f <- Hypergeom2F1(a,b,c,z)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.