View source: R/Hypergeom2F1Mat.R
| Hypergeom2F1Mat | R Documentation |
Hypergeom2F1Mat(a, b, c, X, MAX) computes the The Gauss hypergeometric function 2F1(a,b;c;X)
of a (p x p)-matrix argument X. Hypergeom2F1Mat is defined for the complex
parameters a, b, and c with Re(a) > (p-1)/2 and Re(c-a) > (p-1)/2,
and a real symmetric matrix argument X, with Re(X) < I.
For more details and definition of the hypergeometric functions with matrix argument see, e.g., Koev and Edelman (2006) or Muirhead (2009).
Hypergeom2F1Mat(a, b, c, X, MAX)
a |
complex vector of parameters of the hypergeometric function |
b |
complex vector of parameters of the hypergeometric function |
c |
complex vector of parameters of the hypergeometric function |
X |
real symmetric |
MAX |
maximum number of partitions, |
Hypergeometric sum, 2F1(a,b;c;X).
Ver.: 18-Oct-2018 13:52:32 (consistent with Matlab CharFunTool v1.3.0, 22-Aug-2018 12:23:08).
[1] Koev, P. and Edelman, A., 2006. The efficient evaluation of the hypergeometric function of a matrix argument. Mathematics of Computation, 75(254), 833-846.
[2] Muirhead RJ. Aspects of multivariate statistical theory. John Wiley & Sons; 2009 Sep 25.
[3] Butler RW, Wood AT. Laplace approximations for hypergeometric functions with matrix argument. The Annals of Statistics. 2002;30(4):1155-77.
Other Utility Function:
ChebCoefficients(),
ChebPoints(),
ChebPolyValues(),
ChebPoly(),
ChebValues(),
GammaLog(),
GammaMultiLog(),
GammaMulti(),
GammaZX(),
Hypergeom1F1MatApprox(),
Hypergeom1F1Mat(),
Hypergeom2F1(),
HypergeompFqMat(),
InterpChebValues(),
hypergeom1F1(),
interpBarycentric()
## EXAMPLE
a <- 3
b <- 2.5
c <- 1.5
# X <- c(1, 2, 3) / 5
X <- t(c(1, 2, 3) / 5)
MAX <- 50
f <- Hypergeom2F1Mat(a, b, c, X, MAX)
# a <- 3
# b <- c(1,2,3,4,5)
# c <- c(5,4,3,2,1)
# X <- t(c(1, 2, 3)) / 5
# MAX <- 10
# f <- Hypergeom2F1Mat(a, b, c, X, MAX)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.