View source: R/cfX_ChiSquare.R
| cfX_ChiSquare | R Documentation |
cfX_ChiSquare(t, df, ncp, coef, niid) evaluates the characteristic function cf(t)
of the CHI-SQUARE distribution with df > 0 degrees of freedom and the non-cetrality parameter ncp > 0.
cfX_ChiSquare is an ALIAS NAME of the more general function
cf_ChiSquare, used to evaluate the characteristic function of a linear combination
of independent CHI-SQUARE distributed random variables.
The characteristic function of the CHI-SQUARE distribution is defined by
cf(t) = (1 - 2*i*t )^(df/2) * exp((i*t*ncp)/(1-2*i*t)).
cfX_ChiSquare(t, df, ncp, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
df |
the degrees of freedom parameter |
ncp |
the non-centrality parameter |
coef |
vector of coefficients of the linear combination of Chi-square distributed random variables.
If coef is scalar, it is assumed that all coefficients are equal. If empty, default value is |
niid |
scalar convolution coeficient. |
Characteristic function cf(t) of the CHI-SUQARE distribution.
Ver.: 16-Sep-2018 19:20:45 (consistent with Matlab CharFunTool v1.3.0, 24-Jun-2017 10:07:43).
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Chi-squared_distribution.
Other Continuous Probability Distribution:
cfS_Arcsine(),
cfS_Beta(),
cfS_Gaussian(),
cfS_Laplace(),
cfS_Rectangular(),
cfS_Student(),
cfS_TSP(),
cfS_Trapezoidal(),
cfS_Triangular(),
cfS_Wigner(),
cfX_Exponential(),
cfX_FisherSnedecor(),
cfX_Gamma(),
cfX_InverseGamma(),
cfX_LogNormal(),
cf_ArcsineSymmetric(),
cf_BetaNC(),
cf_BetaSymmetric(),
cf_Beta(),
cf_ChiSquare(),
cf_Exponential(),
cf_FisherSnedecorNC(),
cf_FisherSnedecor(),
cf_Gamma(),
cf_InverseGamma(),
cf_Laplace(),
cf_LogRV_BetaNC(),
cf_LogRV_Beta(),
cf_LogRV_ChiSquareNC(),
cf_LogRV_ChiSquare(),
cf_LogRV_FisherSnedecorNC(),
cf_LogRV_FisherSnedecor(),
cf_LogRV_MeansRatioW(),
cf_LogRV_MeansRatio(),
cf_LogRV_WilksLambdaNC(),
cf_LogRV_WilksLambda(),
cf_Normal(),
cf_RectangularSymmetric(),
cf_Student(),
cf_TSPSymmetric(),
cf_TrapezoidalSymmetric(),
cf_TriangularSymmetric(),
cf_vonMises()
## EXAMPLE 1
# CF of the ChiSquared distribution with df = 1
df <- 1
t <- seq(from = -50,
to = 50,
length.out = 501)
plotReIm(function(t)
cfX_ChiSquare(t, df), t, title = "CF of the Chi-square distribution with df = 1")
## EXAMPLE 2
# PDF/CDF of the ChiSquare distribution with df = 3
df <- 3
x <- seq(from = 0,
to = 15,
length.out = 101)
prob <- c(0.9, 0.95, 0.99)
cf <- function(t)
cfX_ChiSquare(t, df)
options <- list()
options$xMin <- 0
options$N <- 2 ^ 14
result <- cf2DistGP(cf, x, prob, options)
## EXAMPLE 3
# PDF/CDF of the compound Binomial-ChiSquared distribution
n <- 25
p <- 0.3
df <- 3
cfX <- function(t)
cfX_ChiSquare(t, df)
cf <- function(t)
cfN_Binomial(t, n, p, cfX)
x <- seq(from = 0,
to = 80,
length.out = 101)
prob <- c(0.9, 0.95, 0.99)
options <- list()
options$isCompound <- TRUE
result <- cf2DistGP(cf, x, prob, options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.