View source: R/cfX_Exponential.R
cfX_Exponential | R Documentation |
cfX_Exponential(t, lambda)
evaluates characteristic function of the EXPONENTIAL distribution
with the rate parameter lambda > 0
.
cfX_Exponential
is an ALIAS NAME of the more general function cf_Exponential
,
used to evaluate the characteristic function of a linear combination
of independent EXPONENTIAL distributed random variables. The characteristic function of the EXPONENTIAL distribution is
cf(t) = \lambda / (\lambda - 1i*t).
cfX_Exponential(t, lambda, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
lambda |
vector of the 'rate' parameters |
coef |
vector of coefficients of the linear combination of Exponentially distributed random variables.
If coef is scalar, it is assumed that all coefficients are equal. If empty, default value is |
niid |
scalar convolution coeficient. |
Characteristic function cf(t)
of the EXPONENTIAL distribution.
Ver.: 16-Sep-2018 19:21:37 (consistent with Matlab CharFunTool v1.3.0, 24-Jun-2017 10:07:43).
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Exponential_distribution.
Other Continuous Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_TSP()
,
cfS_Trapezoidal()
,
cfS_Triangular()
,
cfS_Wigner()
,
cfX_ChiSquare()
,
cfX_FisherSnedecor()
,
cfX_Gamma()
,
cfX_InverseGamma()
,
cfX_LogNormal()
,
cf_ArcsineSymmetric()
,
cf_BetaNC()
,
cf_BetaSymmetric()
,
cf_Beta()
,
cf_ChiSquare()
,
cf_Exponential()
,
cf_FisherSnedecorNC()
,
cf_FisherSnedecor()
,
cf_Gamma()
,
cf_InverseGamma()
,
cf_Laplace()
,
cf_LogRV_BetaNC()
,
cf_LogRV_Beta()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_ChiSquare()
,
cf_LogRV_FisherSnedecorNC()
,
cf_LogRV_FisherSnedecor()
,
cf_LogRV_MeansRatioW()
,
cf_LogRV_MeansRatio()
,
cf_LogRV_WilksLambdaNC()
,
cf_LogRV_WilksLambda()
,
cf_Normal()
,
cf_RectangularSymmetric()
,
cf_Student()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
,
cf_TriangularSymmetric()
,
cf_vonMises()
## EXAMPLE 1
# CF of the Exponential distribution with lambda = 5
lambda <- 5
t <- seq(from = -50,
to = 50,
length.out = 501)
plotReIm(function(t)
cfX_Exponential(t, lambda), t, title = "CF of the Exponential distribution with lambda = 5")
## EXAMPLE 2
# PDF/CDF of the Exponential distribution with lambda = 5
lambda <- 5
cf <- function(t)
cfX_Exponential(t, lambda)
x <- seq(from = 0,
to = 1.5,
length.out = 101)
options <- list()
options$xMin <- 0
options$SixSigmaRule <- 8
result <- cf2DistGP(cf = cf, x = x, options = options)
## EXAMPLE 3
# PDF/CDF of the compound Binomial-Exponential distribution
n <- 25
p <- 0.3
lambda <- 5
cfX <- function(t)
cfX_Exponential(t, lambda)
cf <- function(t)
cfN_Binomial(t, n, p, cfX)
x <- seq(from = 0,
to = 5,
length.out = 101)
prob <- c(0.9, 0.95, 0.99)
options <- list()
options$isCompound <- TRUE
result <- cf2DistGP(cf, x, prob, options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.