cfX_Gamma | R Documentation |
cfX_Gamma(t, alpha, beta, coef, niid)
evaluates the characteristic function cf(t)
of the GAMMA distribution with the shape parameter alpha > 0
and the rate parameter beta > 0
.
cfX_Gamma
is an ALIAS NAME of the more general function cf_Gamma
,
used to evaluate the characteristic function of a linear combination
of independent GAMMA distributed random variables.
The characteristic function of the GAMMA distribution is defined by
cf(t) = (1 - i*t/\beta)^(-\alpha).
cfX_Gamma(t, alpha, beta, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
alpha |
the shape parameter |
beta |
the rate ( |
coef |
vector of coefficients of the linear combination of Gamma distributed random variables.
If coef is scalar, it is assumed that all coefficients are equal. If empty, default value is |
niid |
scalar convolution coeficient. |
Characteristic function cf(t)
of the GAMMA distribution.
Ver.: 16-Sep-2018 19:22:15 (consistent with Matlab CharFunTool v1.3.0, 24-Jun-2017 10:07:43).
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Gamma_distribution.
Other Continuous Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_TSP()
,
cfS_Trapezoidal()
,
cfS_Triangular()
,
cfS_Wigner()
,
cfX_ChiSquare()
,
cfX_Exponential()
,
cfX_FisherSnedecor()
,
cfX_InverseGamma()
,
cfX_LogNormal()
,
cf_ArcsineSymmetric()
,
cf_BetaNC()
,
cf_BetaSymmetric()
,
cf_Beta()
,
cf_ChiSquare()
,
cf_Exponential()
,
cf_FisherSnedecorNC()
,
cf_FisherSnedecor()
,
cf_Gamma()
,
cf_InverseGamma()
,
cf_Laplace()
,
cf_LogRV_BetaNC()
,
cf_LogRV_Beta()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_ChiSquare()
,
cf_LogRV_FisherSnedecorNC()
,
cf_LogRV_FisherSnedecor()
,
cf_LogRV_MeansRatioW()
,
cf_LogRV_MeansRatio()
,
cf_LogRV_WilksLambdaNC()
,
cf_LogRV_WilksLambda()
,
cf_Normal()
,
cf_RectangularSymmetric()
,
cf_Student()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
,
cf_TriangularSymmetric()
,
cf_vonMises()
## EXAMPLE 1
# CF of the Gamma distribution with alpha = 2, beta = 2
alpha <- 2
beta <- 2
t <- seq(-20, 20, length.out = 501)
plotReIm(function(t)
cfX_Gamma(t, alpha, beta),
t,
title = "CF of the Gamma distribution with alpha = 2, beta = 2")
## EXAMPLE 2
# PDF/CDF of the Gamma distribution with alpha = 2, beta = 2
alpha <- 2
beta <- 2
x <- seq(from = 0,
to = 5,
length.out = 101)
prob <- c(0.9, 0.95, 0.99)
options <- list()
options$xMin <- 0
options$N <- 2 ^ 14
cf <- function(t)
cfX_Gamma(t, alpha, beta)
result <- cf2DistGP(cf, x, prob, options)
## EXAMPLE 3
# PDF/CDF of the compound Binomial-Gamma distribution
n = 25
p = 0.3
alpha <- 2
beta <- 2
cfX <- function(t)
cfX_Gamma(t, alpha, beta)
cf <- function(t)
cfN_Binomial(t, n, p, cfX)
x <- seq(from = 0,
to = 25,
length.out = 101)
prob <- c(0.9, 0.95, 0.99)
options <- list()
options$isCompound <- TRUE
result <- cf2DistGP(cf, x, prob, options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.