View source: R/cfX_InverseGamma.R
| cfX_InverseGamma | R Documentation |
cfX_InverseGamma(t, alpha, beta, coef, niid) evaluates the characteristic function cf(t)
of the INVERSE GAMMA distribution with the shape parameter alpha > 0 and the rate parameter beta > 0.
cfX_InverseGamma is an ALIAS NAME of the more general function cf_InverseGamma,
used to evaluate the characteristic function of a linear combination
of independent INVERSE GAMMA distributed random variables.
The characteristic function of the GAMMA distribution is defined by
cf(t) = 2 / gamma(\alpha) * (-1i*\beta*t).^(\alpha/2) * besselk(\alpha,sqrt(-4i*\beta*t)).
cfX_InverseGamma(t, alpha, beta, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
alpha |
the shape parameter |
beta |
the rate (1/scale) parameter |
coef |
vector of coefficients of the linear combination of Inverse Gamma distributed random variables.
If coef is scalar, it is assumed that all coefficients are equal. If empty, default value is |
niid |
scalar convolution coeficient. |
Characteristic function cf(t) of the INVERSE GAMMA distribution.
Ver.: 16-Sep-2018 19:25:22 (consistent with Matlab CharFunTool v1.3.0, 15-Nov-2016 13:36:26).
WITKOVSKY, V.: Computing the distribution of a linear combination of inverted gamma variables, Kybernetika 37 (2001), 79-90.
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Inverse-gamma_distribution.
Other Continuous Probability Distribution:
cfS_Arcsine(),
cfS_Beta(),
cfS_Gaussian(),
cfS_Laplace(),
cfS_Rectangular(),
cfS_Student(),
cfS_TSP(),
cfS_Trapezoidal(),
cfS_Triangular(),
cfS_Wigner(),
cfX_ChiSquare(),
cfX_Exponential(),
cfX_FisherSnedecor(),
cfX_Gamma(),
cfX_LogNormal(),
cf_ArcsineSymmetric(),
cf_BetaNC(),
cf_BetaSymmetric(),
cf_Beta(),
cf_ChiSquare(),
cf_Exponential(),
cf_FisherSnedecorNC(),
cf_FisherSnedecor(),
cf_Gamma(),
cf_InverseGamma(),
cf_Laplace(),
cf_LogRV_BetaNC(),
cf_LogRV_Beta(),
cf_LogRV_ChiSquareNC(),
cf_LogRV_ChiSquare(),
cf_LogRV_FisherSnedecorNC(),
cf_LogRV_FisherSnedecor(),
cf_LogRV_MeansRatioW(),
cf_LogRV_MeansRatio(),
cf_LogRV_WilksLambdaNC(),
cf_LogRV_WilksLambda(),
cf_Normal(),
cf_RectangularSymmetric(),
cf_Student(),
cf_TSPSymmetric(),
cf_TrapezoidalSymmetric(),
cf_TriangularSymmetric(),
cf_vonMises()
## EXAMPLE 1
# CF of the InverseGamma distribution with alpha = 2, beta = 2
alpha <- 2
beta <- 2
t <- seq(-20, 20, length.out = 501)
plotReIm(function(t)
cfX_InverseGamma(t, alpha, beta), t,
title = "CF of the InverseGamma distribution with alpha = 2, beta = 2")
## EXAMPLE 2
# PDF/CDF of the InverseGamma distribution with alpha = 2, beta = 2
alpha <- 2
beta <- 2
cf <- function(t)
cfX_InverseGamma(t, alpha, beta)
x <- seq(0, 15, length.out = 101)
prob <- c(0.9, 0.95, 0.99)
options <- list()
options$xMin <- 0
options$SixSigmaRule <- 10
options$N <- 2 ^ 14
result <- cf2DistGP(cf, x, prob, options)
## EXAMPLE 3
# PDF/CDF of the compound Binomial-InverseGamma distribution
p <- 0.3
n <- 25
alpha <- 2
beta <- 2
cfX <- function(t)
cfX_InverseGamma(t, alpha, beta)
cf <- function(t)
cfN_Binomial(t, n, p, cfX)
x <- seq(0, 70, length.out = 101)
prob <- c(0.9, 0.95, 0.99)
options <- list()
options$isCompound <- TRUE
result <- cf2DistGP(cf, x, prob, options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.