View source: R/cfX_InverseGamma.R
cfX_InverseGamma | R Documentation |
cfX_InverseGamma(t, alpha, beta, coef, niid)
evaluates the characteristic function cf(t)
of the INVERSE GAMMA distribution with the shape parameter alpha > 0
and the rate parameter beta > 0
.
cfX_InverseGamma
is an ALIAS NAME of the more general function cf_InverseGamma
,
used to evaluate the characteristic function of a linear combination
of independent INVERSE GAMMA distributed random variables.
The characteristic function of the GAMMA distribution is defined by
cf(t) = 2 / gamma(\alpha) * (-1i*\beta*t).^(\alpha/2) * besselk(\alpha,sqrt(-4i*\beta*t)).
cfX_InverseGamma(t, alpha, beta, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
alpha |
the shape parameter |
beta |
the rate (1/scale) parameter |
coef |
vector of coefficients of the linear combination of Inverse Gamma distributed random variables.
If coef is scalar, it is assumed that all coefficients are equal. If empty, default value is |
niid |
scalar convolution coeficient. |
Characteristic function cf(t)
of the INVERSE GAMMA distribution.
Ver.: 16-Sep-2018 19:25:22 (consistent with Matlab CharFunTool v1.3.0, 15-Nov-2016 13:36:26).
WITKOVSKY, V.: Computing the distribution of a linear combination of inverted gamma variables, Kybernetika 37 (2001), 79-90.
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Inverse-gamma_distribution.
Other Continuous Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_TSP()
,
cfS_Trapezoidal()
,
cfS_Triangular()
,
cfS_Wigner()
,
cfX_ChiSquare()
,
cfX_Exponential()
,
cfX_FisherSnedecor()
,
cfX_Gamma()
,
cfX_LogNormal()
,
cf_ArcsineSymmetric()
,
cf_BetaNC()
,
cf_BetaSymmetric()
,
cf_Beta()
,
cf_ChiSquare()
,
cf_Exponential()
,
cf_FisherSnedecorNC()
,
cf_FisherSnedecor()
,
cf_Gamma()
,
cf_InverseGamma()
,
cf_Laplace()
,
cf_LogRV_BetaNC()
,
cf_LogRV_Beta()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_ChiSquare()
,
cf_LogRV_FisherSnedecorNC()
,
cf_LogRV_FisherSnedecor()
,
cf_LogRV_MeansRatioW()
,
cf_LogRV_MeansRatio()
,
cf_LogRV_WilksLambdaNC()
,
cf_LogRV_WilksLambda()
,
cf_Normal()
,
cf_RectangularSymmetric()
,
cf_Student()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
,
cf_TriangularSymmetric()
,
cf_vonMises()
## EXAMPLE 1
# CF of the InverseGamma distribution with alpha = 2, beta = 2
alpha <- 2
beta <- 2
t <- seq(-20, 20, length.out = 501)
plotReIm(function(t)
cfX_InverseGamma(t, alpha, beta), t,
title = "CF of the InverseGamma distribution with alpha = 2, beta = 2")
## EXAMPLE 2
# PDF/CDF of the InverseGamma distribution with alpha = 2, beta = 2
alpha <- 2
beta <- 2
cf <- function(t)
cfX_InverseGamma(t, alpha, beta)
x <- seq(0, 15, length.out = 101)
prob <- c(0.9, 0.95, 0.99)
options <- list()
options$xMin <- 0
options$SixSigmaRule <- 10
options$N <- 2 ^ 14
result <- cf2DistGP(cf, x, prob, options)
## EXAMPLE 3
# PDF/CDF of the compound Binomial-InverseGamma distribution
p <- 0.3
n <- 25
alpha <- 2
beta <- 2
cfX <- function(t)
cfX_InverseGamma(t, alpha, beta)
cf <- function(t)
cfN_Binomial(t, n, p, cfX)
x <- seq(0, 70, length.out = 101)
prob <- c(0.9, 0.95, 0.99)
options <- list()
options$isCompound <- TRUE
result <- cf2DistGP(cf, x, prob, options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.