cfX_PearsonV | R Documentation |
cfX_PearsonV(t, alpha, beta)
evaluates the characteristic function
of the Pearson type V distribution with the parameters alpha
(shape, alpha > 0
) and
beta
(scale, beta > 0
), computed for real vector argument t
, i.e.
cfX_PearsonV(t, \alpha, \beta) = (2/gamma(\alpha)) * (-1i*t/\beta)^(\alpha/2) * besselk(\alpha,2*sqrt(-1i*t/\beta)),
where besselk(a,z)
denotes the modified Bessel function of the second order.
cfX_PearsonV(t, alpha = 1, beta = 1)
t |
vector of real values where the CF is evaluated, i.e. |
alpha |
scalar shape parameter of the Pearson VI distribution, |
beta |
scalar scale parameter of the Pearson VI distribution, |
Characteristic function cf(t)
of the Pearson type V distribution.
Ver.: 16-Sep-2018 19:28:37 (consistent with Matlab CharFunTool v1.3.0, 15-Nov-2016 13:36:26).
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Pearson_distribution.
## EXAMPLE 1
# CF of the PearsonV distribution
alpha <- 3 / 2
beta <- 2 / 3
t <- seq(-10, 10, length.out = 1001)
plotReIm(function(t)
cfX_PearsonV(t, alpha, beta), t,
title = "CF of the PearsonV distribution with alpha = 3/2, beta = 2/3")
## EXAMPLE 2
# PDF/CDF of the Beta distribution with alpha = 3/2, beta = 2/3
alpha <- 3 / 2
beta <- 2 / 3
prob <- c(0.9, 0.95, 0.99)
x <- seq(0, 40, length.out = 101)
cf <- function(t)
cfX_PearsonV(t, alpha, beta)
options <- list()
options$xMin <- 0
options$N <- 2 ^ 10
options$SixSigmaRule <- 10
result <- cf2DistGP(cf, x, prob, options)
## EXAMPLE 3
# PDF/CDF of the compound Binomial-PearsonV distribution
n <- 25
p <- 0.3
alpha <- 3 / 2
beta <- 2 / 3
prob <- c(0.9, 0.95, 0.99)
x <- seq(0, 200, length.out = 101)
cfX <- function(t)
cfX_PearsonV(t, alpha, beta)
cf <- function(t)
cfN_Binomial(t, n, p, cfX)
options <- list()
options$isCompound <- TRUE
options$N <- 2 ^ 10
result <- cf2DistGP(cf, x, prob, options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.