View source: R/cf_TSPSymmetric.R
cf_TSPSymmetric | R Documentation |
That is, cfS_TSPSymmetric(t, theta, mu, sigma, coef, niid)
evaluates the characteristic function cf(t)
of
Y = sum_{i=1}^N coef_i * (mu_i + sigma_i * X_i)
, where X_i ~
TSP(theta_i)
are inedependent RVs, with symmetric TSP distributions
defined on the interval (-1,1)
with zero mean and variance Var(X_i) =
2*theta_i*gamma(theta_i)/gamma(3+theta_i)
, where theta_i > 0
are shape
parameters for all zeqni = 1,...,N.
The characteristic function of the random variablemu + sigma*X
, where
X ~ TSP(theta) is given by
cf(t) = cfS_TSPSymmetric(t,theta,mu,sigma) = 1/2 * exp(1i*t*mu) * (hypergeom1F1(1,1+theta,1i*t*sigma) + hypergeom1F1(1,1+theta,-1i*t*sigma))
.
Hence, the characteristic function of Y = coef_1*(mu_1+sigma_1*X_1) + coef_N*(mu_N+sigma_N*X_N)
is cf_Y(t) = exp(1i*mu*t) *(cf_1(coef_1*sigma_1*t) * cf_N(coef_N*sigma_N*t))
, where cf_i(t)
is
the characteristic function of X_i ~ TSP(theta_i)
.
SPECIAL CASES:
1) \theta = 1/2
; Arcsine distribution on (-1,1)
: cf(t) = besselj(0,t)
,
2) \theta = 1
; Rectangular distribution on (-1,1)
: cf(t) = sin(t)/t
.
cf_TSPSymmetric(t, theta, mu, sigma, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
theta |
vector of the shape parameters |
mu |
vector of location parameters, mu in Real. If empty, default value is |
sigma |
vector of scale parameters, |
coef |
vector of the coefficients of the linear combination of the log-transformed random variables. If coef is scalar, it is
assumed that all coefficients are equal. If empty, default value is |
niid |
scalar convolution coeficient n, such that |
Characteristic function of a linear combination (resp. convolution) of independent symmetric (location and scale shifted) TWO-SIDED-POWER (TSP) random variables.
Ver.: 11-Aug-2021 16:18:40 (consistent with Matlab CharFunTool v1.5.1, 24-Jun-2017 18:25:56).
[1] WITKOVSKY V. (2016). Numerical inversion of a characteristic function: An alternative tool to form the probability distribution of output quantity in linear measurement models. Acta IMEKO, 5(3), 32-44. [2] VAN DORP, R.J., KOTZ, S. (2003). Generalizations of two-sided power distributions and their convolution. Communications in Statistics-Theory and Methods, 32(9), 1703-1723.
Other Continuous Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_TSP()
,
cfS_Trapezoidal()
,
cfS_Triangular()
,
cfS_Wigner()
,
cfX_ChiSquare()
,
cfX_Exponential()
,
cfX_FisherSnedecor()
,
cfX_Gamma()
,
cfX_InverseGamma()
,
cfX_LogNormal()
,
cf_ArcsineSymmetric()
,
cf_BetaNC()
,
cf_BetaSymmetric()
,
cf_Beta()
,
cf_ChiSquare()
,
cf_Exponential()
,
cf_FisherSnedecorNC()
,
cf_FisherSnedecor()
,
cf_Gamma()
,
cf_InverseGamma()
,
cf_Laplace()
,
cf_LogRV_BetaNC()
,
cf_LogRV_Beta()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_ChiSquare()
,
cf_LogRV_FisherSnedecorNC()
,
cf_LogRV_FisherSnedecor()
,
cf_LogRV_MeansRatioW()
,
cf_LogRV_MeansRatio()
,
cf_LogRV_WilksLambdaNC()
,
cf_LogRV_WilksLambda()
,
cf_Normal()
,
cf_RectangularSymmetric()
,
cf_Student()
,
cf_TrapezoidalSymmetric()
,
cf_TriangularSymmetric()
,
cf_vonMises()
Other Symmetric Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_Trapezoidal()
,
cf_ArcsineSymmetric()
,
cf_BetaSymmetric()
,
cf_RectangularSymmetric()
,
cf_TrapezoidalSymmetric()
## EXAMPLE 1
# CF of the symmetric TSP distribution with theta =3/2 on (-1,1)
theta <- 3/2
t <- seq(from = -50,
to = 50,
length.out =501)
plotReIm(function(t)
cf_TSPSymmetric(t, theta),
t,
title = "CF of the symmetric TSP distribution on (-1,1)")
##EXAMPLE2
# PDF/CDF of the symmetric TSP distribution on (-1,1)
thet <- 3/2
cf <- function(t)
cf_TSPSymmetric(t, theta)
x <- seq(-1,1,length.out = 101)
xRange <- 2
options <- list()
options.N <-2^8
options.dt <- 2*pi/xRange
result <- cf2DistGP(cf, x, c(), options)
##EXAMPLE 3
# CF of the weighted linear combination of TSP RVs
theta <- c(1, 2, 3, 4, 5)/2
mu <- c(1, 2, 0, 0, 0)
sigma <- c(1, 2, 3, 4, 5)/5
coef <- 1/5
t <- seq(-50,50, length.out= 501)
plotReIm(function(t)
cf_TSPSymmetric(t, theta, mu, sigma, coef),
t,
title = "CF of the weighted linear combination of TSP RVs")
## EXAMPLE 4
# CDF/PDF of the weighted linear combination of TSP RVs
thet <- c(1, 2, 3, 4, 5)/2
mu <- 0
sigma <- c(5, 4, 3, 2, 1)
coef <- 1/5
t <-seq(-50, 50, length.out = 501)
cf <- function(t)
cf_TSPSymmetric(t, theta, mu, sigma, coef)
prob <- c(0.9, 0.95, 0.99)
options <- list()
options.N = 2^12
result <- cf2DistGP(cf, c(), prob, options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.