View source: R/cf_WignerSemicircle.R
cf_WignerSemicircle | R Documentation |
(mu-R,mu+R)
.That is, cf_WignerSemicircle(t,mu,R,coef,niid)
evaluates the characteristic function
cf(t)
of Y = sum_{i=1}^N coef_i * X_i
, where X_i ~ WignerSemicircle
are independent RVs defined on (mu_i-R_i,mu_i+R_i)
, for all i = 1,...,N
.
The characteristic function of X ~ WignerSemicircle(mu,R)
is defined by
cf(t) = 2*exp(1i*t*mu).*besselj(1,R*t)/(R*t)
;
@family Continuous Probability Distribution
@seealso For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Wigner_semicircle_distribution.
cf_WignerSemicircle(t, mu, R, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
mu |
vector of the 'location' parameters mu in R. If empty, default value is |
R |
vector of the 'radius' prameters |
coef |
vector of the coefficients of the linear combination of the Beta distributed random variables.
If |
niid |
scalar convolution coeficient |
Characteristic function cf(t)
of a linear
combination (res. convolution) of independent WIGNER SEMICIRCLE random variables.
Ver.: 10-Aug-2021 17:44:17 (consistent with Matlab CharFunTool v1.5.1, 18-Sep-2018 00:32:58).
## EXAMPLE 1
# CF of the symmetric Wigner Semicircle distribution on (-1,1)
t <- seq(from = -30,
to = 30,
length.out =501)
plotReIm(function(t)
cf_WignerSemicircle(t),
t,
title = "CF of the Wigner Semicircle distribution on (-1,1)")
##EXAMPLE2
# PDF/CDF of Wigner Semicircle RVs
cf <- function(t)
cf_WignerSemicircle(t)
x <- seq(-1,1,length.out = 201)
prob <- c(0.9, 0.95, 0.99)
options <- list()
options$xMin <- -1
options$xMax <- 1
result <- cf2DistGP(cf, x, prob, options)
##EXAMPLE3
# CF of a linear combination of independent Wigner Semicircle RVs
t <- seq(-1,1, length.out= 501)
mu <- c(0, 1, 2, 1, 0)
R <- c(1, 1, 2, 2, 3)
coef <- c(1, 2, 3, 4, 5 )
plotReIm(function(t)
cf_WignerSemicircle(t, mu, R, coef),
t,
title = "CF of a linear combination of independent Wigner Semicircle RVs")
## EXAMPLE 4
# PDF/CDF of a linear combination of independent Wigner Semicircle RVs
mu <- c(0, 1, 2, 1, 0)
R <- c(1, 1, 2, 2, 3)
coef <- c(1, 2, 3, 4, 5)
cf <- function(t)
cf_WignerSemicircle(t, mu, R, coef)
x <- seq(-20, 40, length.out = 201)
prob <- c(0.9, 0.95, 0.99)
options <- list()
options$N = 2^12
result <- cf2DistGP(cf, x, prob, options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.