## EXAMPLE 1
# PMF/CDF of the binomial RVV specified bz its CF
n<-10
p<-0.25
cf<-function(t) cfN_Binomial(t,n,p)
xMin<- 0
xMax<-n
xDelta<-1
options$isPlot<-TRUE
result<-cf2PMF_FFT(cf,xMin,xMax,xDelta,options)
## EXAMPLE 2
# PMF/CDF of the convolved discrete RV specified by its CF
n<-10
p<-0.25
cf_Bino<-function(t) cfN_Binomial(t,n,p)
N<-5
cf<-function(t) cf_Bino(t)^N
xMin<-0
xMax<-N*n
xDelta<-1
options$isPlot=TRUE
result<-cf2PMF_FFT(cf,xMin,xMax,xDelta,options)
## EXAMPLE 3
# PMF/CDF of the mean of IID RV with Poisson distribution
lambda<-5
cf_Pois<-function(t) cfN_Poisson(t,lambda)
N<-10
cf<-function(t) cf_Pois(t/N)^N
xMin<-0
xMax<-10
xDelta<-1/N
options$isPlot=TRUE
result<-cf2PMF_FFT(cf,xMin,xMax,xDelta,options)
## EXAMPLE 4
# PMF/CDF of the convolved discrete RV specified by its CF
# Here we consider convolutions of discrete RV defined on{0,1,2}
# with probabilities p=[0.2,0.5,0.3]
supp<-c(0,1,2)
prob<-c(0.2,0.5,0.3)
cf_X<-function(t) cfE_DiracMixture(t,supp,prob)
N<-5
cf<-function(t) cf_X(t)^N
xMin<-0
xMax<-max(supp)*N
xDelta<-1
options$isPlot<-TRUE
result<-cf2PMF_FFT(cf,xMin,xMax,xDelta,options)
## EXAMPLE 5
# PMF/CDF of the exact bootrap mean distribution specified by its CF
data<-c(-2,0,0,0,0,0,0,0,1,4)
N<-length(data)
cf<- function(t) cfE_Empirical(t/N,data)^N
xMin<-min(data)
xMax<-max(data)
xDelta<-1/N
options$isPlot<-TRUE
result<-cf2PMF_FFT(cf,xMin, xMax, xDelta, options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.