#' @title
#' p-value of the log-transformed LRT statistic and/or its null
#' distribution CF/PDF/CDF
#'
#' @description
#' \code{LRT05_Sphericity(W, n, p, options)} computes \eqn{p}-value of the log-transformed LRT
#' statistic \eqn{W = -log(\Lambda)}, for testing the null hypothesis of equality
#' of \eqn{q} (\eqn{q > 1}) \eqn{p}-dimensional normal populations, and/or its null distribution CF/PDF/CDF.
#'
#' @param W observed value of the minus log-transformed LRT statistic
#' \eqn{W = -log(\Lambda)}. If empty, the algorithm evaluates the
#' CF/PDF/CDF and the quantiles of the null distribution of \eqn{W}.
#' @param n sample size, \eqn{n > min(p+q-1)}.
#' @param p common dimension of the vectors \eqn{X_k, k = 1,...q}.
#' @param options option structure, for more details see \code{\link{cf2DistGP}}. Moreover, \cr
#' \code{x} set vector of values where PDF/CDF is evaluated, \cr
#' \code{prob} set vector of probabilities for the quantiles, \cr
#' \code{coef} set arbitrary multiplicator of the argument \code{t}
#' of the characteristic function. If empty, default value is \eqn{-n/2}
#' (standard value for minus log-transform of LRT). Possible
#' alternative is e.g. \code{coef = -1}, leading to \eqn{W = -(2/n)*log(LRT)}.
#'
#' @details
#' In particular, let \eqn{X ~ N_p(\mu,\Sigma)}, then, the null hypothesis is given as
#' \eqn{H0: \Sigma = \sigma^2 I_p} (\eqn{\sigma^2} unspecified).
#' Here, the LRT test statistic is given by
#' \eqn{\Lambda = (det(S) / trace((1/p)*S)^p})^{n/2},
#' where S is MLE of Sigma based on sample size n from \eqn{X ~ N_p(\mu,\Sigma)}.
#' Under null hypothesis, distribution of the test statistic \eqn{\Lambda} is
#' \eqn{\Lambda ~ prod_{j=2}^{p} (B_j)^{n/2}},
#' with \eqn{B_j ~ Beta((n-j)/2,(j-1)/p + (j-1)/2)}, where \eqn{j = (2,...,p)}.
#' Here we assume that \eqn{n > p}.
#' Hence, the exact characteristic function of the null distribution of
#' minus log-transformed LRT statistic \eqn{\Lambda}, say \eqn{W = -log(\Lambda)} is given by
#' \eqn{cf = function(t) {cf_LogRV_Beta(-(n/2)*t, (n-j)/2, (j-1)/p + (j-1)/2)}},
#' where \eqn{j = (2,..., p)'}.
#'
#' @return
#' \eqn{p}-value of the log-transformed LRT statistic, \eqn{W = -log(\Lambda)}
#' and/or its null distribution CF/PDF/CDF.
#'
#' @references
#' [1] ANDERSON, Theodore Wilbur. An Introduction to Multivariate Statistical Analysis.
#' New York: Wiley, 3rd Ed., 2003.
#'
#' [2] MARQUES, Filipe J.; COELHO, Carlos A.; ARNOLD, Barry C. A general
#' near-exact distribution theory for the most common likelihood ratio
#' test statistics used in Multivariate Analysis. Test, 2011, 20.1:180-203.
#'
#' [3] WITKOVSKY, Viktor. Exact distribution of selected multivariate test
#' criteria by numerical inversion of their characteristic functions. \cr
#' arXiv preprint arXiv:1801.02248, 2018.
#'
#' @family Likelihood Ratio Test
#'
#' @note Ver.: 16-Sep-2018 21:11:16 (consistent with Matlab CharFunTool v1.3.0, 20-Jan-2018 12:43:15).
#'
#' @example R/Examples/example_LRT05_Sphericity.R
#'
#' @export
#'
LRT05_Sphericity <- function(W, n, p, options) {
## CHECK THE INPUT PARAMETERS
if (missing(n) || missing(p)) {
stop("Enter input parameters n, p.")
}
if (missing(options)) {
options <- list()
}
if (is.null(options$x)) {
options$x <- vector()
}
if (is.null(options$prob)) {
options$prob <- vector()
}
if (is.null(options$coef)) {
options$coef <- vector()
}
if (is.null(options$xMin)) {
options$xMin <- 0
}
if (n <= p) {
stop("Sample size n is too small.")
}
# CHARACTERISTIC FUNCTION CF
coef <- options$coef
if (length(coef) == 0) {
coef <- -n / 2 # set this option for using with W = -log(LRT)
# coef <- -1 # set this options for using normalized -log(LRT^(2/n))
}
ind <- Conj(2:p)
alpha <- (n - ind) / 2
beta <- (ind - 1) / p + (ind - 1) / 2
cf <- function(t) {
cf_LogRV_Beta(t, alpha, beta, coef)
}
# Evaluate the p-value and PDF/CDF/QF of the log-transformed LRT statistic.
if (!missing(W) && length(W) > 0) {
# % P-VALUE
options$isPlot <- FALSE
result <- cf2DistGP(cf = cf, x = W, options = options)
pval <- 1 - result$cdf
} else {
# DISTRIBUTION of Lambda PDF/CDF
pval <- vector()
result <-
cf2DistGP(
cf = cf,
x = options$x,
prob = options$prob,
options = options
)
}
result$alpha <- alpha
result$beta <- beta
return(list(pval, result))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.